王崎要跟冯🚱🗌落衣🕼🏀说的,自然就是内模型计划了。
内模型和可构造类,差不多就是花与果的关系了。可🗜🜛构造类是花🗍🚕,内模型是果。🂱💦
但是,内模型毕竟是有致命缺陷的。
首先,它是完全建立在良🂲基集合之上的。🅊🄻而算学也确实是存在只有非良基集合才能驾驭的部分。
而且,它也排除了循环,不包含无穷降链。
另外,它也不能容纳包🗶括第一、第二不可达基数在内的大基数。
大基数好处有很多。之前也说过,引入大基数可以直接证明任何可构造的实数集合不会引发分球悖论,并且不需要取消选择函数;引入大基数可以证明二阶算🕇🙗术的完备性🁂,等等。
而筑基学派的理论体系想要发展,也必🇬🛥须要有大基🇧🚹😕数才行。
但内模型也并非一无是处。
连续统问题,其实可以🗶算是一个三阶问题了。而大基数,恰好不能解决三阶问题。
内模型发可以完美解决。
所以,为了大基数,而抛弃内🁥🇹🝠模型,也是捡了🅯芝麻丢了西瓜的蠢事。
所以,王崎就提出了一个想法。
一🔬🃬🚷个😬很自然的,“合在一起做撒📰🞟尿牛丸”的想法。
从内模型开始,使用力迫法,不断添加元素,一步步将数学模型本身扩张,直到它能够容纳大基数🇱🜘为🙿止。
力迫法本身就是通过不断添加元素🏢🛰,使得两个不同集合的联系暴露,最终达到一种“让理论自己证明自己”的效果的。
内模型计划,算是元算之算的最终极了。